Chapter 11

POLYNOMIALLY SOLVABLE CASES
OF THE TSP

Santosh N. Kabadi
Faculty of Administration
University of New Brunswick
Fredericton, New Brunswick
Canada E3B 5A3
kabadi@unb.ca

This chapter is dedicated to the memory of my parents
Mr. Narayan D Kabadi and Mrs Sushilabai N Kabadi.

1. Introduction

In this chapter we use the permutation definition of TSP introduced
in Chapter 1. Given a cost matrix C of size n, the Traveling Salesman
Problem (TSP) is thus to find a tour y on N = {1,2,...,n} such that
c(7) = 2 ien Ciny(e) 18 minimum. We allow some non-diagonal elements
of C to be oo. For E = {(3,7) : ¢i; 1s finite}, G = (N, E) is called the
digraph associated with C and we call C compatible with G. If C is
symmetric, then we define G as an undirected graph. As in previous
chapters, TSP can be equivalently stated as the problem of finding a
tour ® in G such that ¢(H) = 37, yepcij is minimum. We denote this
problem by TSP(G, C). When G is a complete digraph or graph (or
equivalently, all the non-diagonal entries of C are finite), we denote the
problem by TSP(C).

2. Constant TSP and its generalizations

We start with a very special subclass of the TSP called constant-TSP.
An instance TSP(G, C) is called a constant-TSP if and only if all the

489

G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and Its Variations, 489-583.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

490 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

tours in G have the same cost with respect to C. We call a matrix C
with finite non-diagonal entries a constant tour matrix (CT-matrix) if
and only if 7SP(C) is a constant-TSP.

A complete characterization of matrices C for which TSP(G,C) is -
constant-TSP is an open problem. For any digraph G = (N, E) and
arbitrary values {a;,b; : i € N}, if C is defined as ci; = a; + b; for all
(¢,7) € E, and c¢;; = oo forall (z,5) ¢ E, then TSP(G, C) is obviously a
constant-TSP. Gabovich [341] proved that the reverse implication holds
when G is complete. He attributes the special case of this result for
the case of symmetric cost matrices to Rublineckii [733] and Leontev
[557]. Several other independent proofs of this result have since then
been reported [176, 361, 489, 558]. An independent proof for only the
symmetric case is also reported in [524].

Theorem 1 A cost matrix C is a CT-matrix if and only if there exist
{ai,bi : i € N} such that ¢ij = a; + b; for all 4,5, i # j. If C is
symmetric, then it is a CT-matrix if and only if there exist {a; 11 € N}
such that ¢i; = a; + a; for all 1,7, 1 # j.

Proof. The sufficiency part of the theorem is easy to prove.

The following simple proof of necessity of the condition is taken from
[489]. Let C be a CT-matrix and let G be a complete digraph on node
set N. Define p=cy9—ci1p~¢p2;, a;=cin+p/2 and b; = ¢, ; +p/2 for
t=1,...,n~1; and a, = b, = —p/2. When the matrix C is symmetric,
we have a; = b; for all 5. Define matrix C’ as c;j = ¢;; — a; — b for
all i,5. Then ¢j, = O and forall 1 <4 < n, ¢, =c,; =0.Let G
be the directed subgraph of G obtained by deleting node n and let C”
be obtained from C’ by deleting its nth row and column. Then every
Hamiltonian path in G’ has the same cost, say u, with respect to the
cost matrix C' . Let -y be an arbitrary tour in G’. For each i € N — {n},
7 defines a unique Hamiltonian path in G’ from ~(7) to ¢ with total cost
() —C;I;y(i) = u. Hence c;’ﬁ(i) =u/(n—2) forall : € N—{n}. Since the
tour v was selected arbitrarily, it follows that each non-diagonal element
of C” has value u/(n ~ 2). Since ¢{5 = 0, this implies that each non-
diagonal element of C”, and therefore each non-diagonal element of C”,
has a value of 0. This proves the theorem. m

The above result can be equivalently stated in terms of the dimension
of the TSP polytope of a complete digraph (graph). This is discussed in
Chapter 2.

Suppose G = (N, E) is the undirected tour (1,2,...,n,1). Then
TSP(G, C) is a constant-TSP for any symmetric matrix C compati-
ble with G. It was observed by Krynski [524] that when n is an even

integer, there exist symmetric matrices C compatible with G for which

Polynomially Solvable Cases of the TSP 491

there do not exist {a; : ¢ € N} such that ¢;; = a; + a; forall (i,) € E.
Thus, the above characterization of CT-matrices does not extend to ma-
trices compatible with an arbitrary graph or digraph. We call a digraph
G = (N, E) a constant tour digraph (CT-digraph) if and only if whenever
TSP(G, C) is a constant-TSP, there exist {a;,b; : i € N} such that for
all (4,5) € E, ¢;; = a; + b;. An undirected graph G = (N, E) is called
CT-graph if and only if for any symmetric matrix C compatible with G
such that TSP(G, C) is a constant-TSP, there exist {a; : ¢ € N} such
that for all (,7) € E, ¢;; = a; + a;. A complete characterization of CT-
graphs and CT-digraphs is an open problem. Note that this problem is
different from the problem, mentioned earlier, of characterizing matri-
ces C for which TSP(G, C) is constant TSP. We give below results on
subclasses of CT-graphs and CT-digraphs reported in [489].

Let (V1, V3) be a pair of disjoint, finite sets. For any two digraphs
G1 = (V1,Ep) and Gy = (Va, Ey), the join of Gy and Gy is the digraph
G1+Ge = (ViuVy, E") where B = E1UEU{(4,7),(4,7) : 1 € V1,5 € Va}.
For any two undirected graphs G; = (V4, E1) and Gy = (Va, E»), the join
of Gy and Gy is the undirected graph G, + Gy = (V3 UV, E'), where
E' = FE{UEyU {(Z]) 1EeV,JE VQ}. If |VQI =1 then we call G; + Gy
the I-extension of Gy [489].

The only properties of the digraph G that are used in the proof of
Theorem 1 are : (i) {(¢,n),(n,9)} C F forall ¢ € {1,...,n— 1} and
(ii) the digraph G’ obtained from G by deleting the node n is strongly
Hamiltonian (that is, every arc in G’ lies on some tour). The same
argument can therefore be used to prove Theorem 2 below.

Theorem 2 [489] The 1-extension of a strongly Hamiltonian digraph is
a CT-digraph.

For the undirected case, we can get the following slightly stronger
result.

Theorem 3 [489] The l-extension of a Hamiltonian graph is a CI-
graph.

It may be noted that for n > 3, the complete digraph (graph) on
node set NV is l-extension of the complete digraph (graph) on node set
N — {n}. Theorem 1 is thus a simple corollary of theorems 2 and 3.

For two bipartite digraphs (graphs) G; = (S1UT1, E1) and Gg = (SaU
T5, E») on disjoint node sets, B-join of G; and Go, denoted by G| +5 G,
is the bipartite digraph (graph) with node set (S;USs)U(77UT3) and arc
set (edge set) By UEy U {(4,7),(4,7) :i€ S5, € To} U{(3,7),(4,7) : 1 €
So,j € T1} (B1VERU{(4,7) : i € S1;75 € TojU{(4,7) i€ Sp;5 € T1}). If

492 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Gs is the complete digraph (graph) on two nodes then we call G1+p G2
the 1-1 extension of Gj.

Theorem 4 [489] The 1 — 1 extension of a strongly Hamiltonian bi-
partite digraph is a CT-digraph. The 1 — 1 extension of a Hamiltonian
bipartite graph is a CT-graph.

Since the complete bipartite digraph (graph) k (n,n) (K(n,n)) is the
1 — 1 extension of k¢ (n — 1,n—1) (K(n — 1,n — 1)), it follows from
Theorem 4 that k (n,n) (K(n,n))is a CT-digraph (graph) for all n.

The following additional classes of CT-graphs and digraphs are iden-
tified in [489].

Theorem 5 [489] Let Gy = (V1, E1) and Gy = (Va, E2) be two digraphs
(graphs) on disjoint node sets. Then under each of the following condi-
tions, G1+ Gy is a CT-digraph (graph).

(i) G1 and Gy have at least one arc (edge) each and 3 < |Vi| = |V4l.
(ii) 2<|Vi| < |Val|, |E1| # 0 and Gg is Hamiltonian.

(iii) 3 < |Vi| < |Val, |E1| # 0, and Go has k node-disjoint simple paths
which cover all the nodes in Vy for some k < |Vi| — 1.

At first sight, it may seem that a necessary condition for an undirected
graph G to be a CT-graph would be that every edge in G lies in some
tour in G [524]. A counter-example to this can be produced using the
following observation.

Observation 6 [489] Let G = (SUT,E) be a CT-graph. Then G' =
(SUT,EU{(u,v)}) is a CT-graph, where u,v either both belong to S or
they both belong to T.

For additional results on subclasses of CT-digraphs (graphs) as well
as interesting classes of digraphs (graphs) that are not CT-digraphs
(graphs), the reader is referred to [489].

The significance of the class constant-TSP in the study of polyno-
mially solvable cases of the TSP lies in the fact that if TSP(G,C’) is
a constant-TSP, then for any other matrix C compatible with G and
for arbitrary tours v and ¢ in G, c(y) — c¢(¢) = " (v) — ¢'(¢), where
C" = C + C'. For any cost matrix C with associated digraph G, let us
define the equivalence class

const(C) = {C + C’:C"is compatible with G and
TSP(G,C’) is a constant-TSP}.

Polynomially Solvable Cases of the TSP 493

We conjecture that the class of polynomially solvable cases of TSP is
closed with respect to this equivalence relation, (that is, if TSP(C)
is polynomially solvable then TSP(C_’) is polynomially solvable for any
C € const(C)).

We define below the concept of density matrix of a matrix with finite

entries', which is used extensively throughout this chapter.

Definition 7 : For any n X n matrix A with finite entries (including
the diagonal entries), the density matrix D of A is an (n—1) x (n — 1)
matrix defined as

dij = Qig+1 + Qg1 — @5 — 1541 ¥V 1<4,5 <.

4
. For example, if A =

3 —4
o=t 7]
Observation 8 [51, 479, 483] Two n X n matrices A and B have the

same density matrix if and only if there exist {u;,v; : i € N} such that
Q;5 = bi]' + u; + vj for all 7, 7.

5 4
5 3 6 | then its density matrix is
4 1 2

For any finite matrix C, let us define the equivalenceclass dens(C)
as the set of all matrices with the same density matrix as C. From
Observation 8, it follows that dens(C) C const(C). As we shall see later,
many of the known polynomially solvable classes of TSP are closed under
this stronger equivalence relation.

We end this section with an interesting generalization of Theorem
1 given in [785]. We call a matrix C with finite non-diagonal ele-
ments a bi-constant tour matrix (BCT-matrix) if and only if [{c(v) :
visatouron N}| < 2.

Theorem 9 [785] A matrix C is a BCT-matrix if and only if C €

const(C"), where non-diagonal entries of C' have at the most two distinct

values, say 0 and a, and either all non-diagonal entries with value a lie

in a single row or column, or there are only two non-diagonal entries of
/

value a and these are of the type c;j and Cji-

A different characterization of BCT-matrices with an elementary proof
is reported in [488].

'"Though diagonal elements of the cost matrix C do not play any role in the definition of TSP,
strangely, many of the algorithms for solvable cases of TSP (for example the Gilmore-Gomory
algorithm) require diagonal elements to be finite and satisfy specific properties.

494 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

3. The Gilmore-Gomory TSP (GG-TSP)

The Gilmore-Gomory TSP [360] is one of the most celebrated poly-
nomially solvable cases of the TSP. Besides being one of the first known,
non-trivial polynomially solvable cases, it is also the first such case with
significant real-world applications. A very simple polynomial time algo-
rithm for this case, with a simple proof of its validity, is given by Ball et
al [83] and we shall discuss it in Section 5. The algorithm that Gilmore
and Gomory developed for the problem is however more efficient and
it is also non-trivial with a fairly non-trivial proof of its validity. We
discuss this algorithm in this section and in Section 4 we show that a
slight generalization of this algorithm produces an optimal solution to a
fairly large subclass of the TSP.

Gilmore and Gomory [360] considered the following case. A set of
n given jobs are to be heat-treated in a furnace and only one job can
be treated in the furnace at a time. The treatment of the ¢th job in-
volves introducing it into the furnace at a given temperature a; and
heating/cooling it in the furnace to a given temperature b;. The costs
of heating and cooling the furnace are given by functions f(.) and g(.),
respectively. Thus, for any u,v in R, v < v, the cost of heating the fur-
nace from temperature u to temperature vis [f(z)dz, while the cost
of cooling the furnace from v to u is [g(z)dz. Gilmore and Gomory
impose the realistic condition that

for any z € R, f(z)+ g(z)>0.

For each ordered pair (i,7) of jobs, if we decide to heat-treat job j
immediately after job 7, then the furnace temperature has to be changed
from b; to a;. This cost, which we call the change-over cost and denote
by c;;, 1s given by

o — bC:j f(ﬂ,‘)dif,’ if bz' S a;
v f:; g(z)dz if a; < b;.

Starting with the furnace temperature of a; and processing job 1 first,
we want to sequentially heat-treat all the jobs and end by returning the
furnace temperature to a;. The problem is to decide the order in which
the jobs should be treated in the furnace so as to minimize the total
change-over cost.

Gilmore and Gomory point out that if the starting temperature of the
furnace is some other temperature ag and after processing all the jobs
we want the ending temperature of the furnace to be say bg, then the
problem can be converted to the above case by introducing an (n -+ 1)th
job with any] = by and bp+1 = ag.

Polynomially Solvable Cases of the TSP 495

3.1. Gilmore-Gomory scheme for GG-TSP

Let us now discuss the Gilmore-Gomory patching algorithm [360]
(with minor modifications) for their special case of TSP.

We associate with any permutation 7 on N a digraph G, = (N, E;),
where B, = {(i,n(i)) : i € N}.Let G1,Gy,...,G, be the connected
components of G, on node sets N1, Na, ..., N,, respectively. Then each
G, defines a subtour €; on the node set N;. We call ¢, €9,...,C, the
subtours of 7. If r = 1 then = defines a four on N and we call such a
permutation a four. If |[N;| > 1 then the subtour €; is called a non-trivial
subtours of m. A permutation with a single non-trivial subtour is called
a circuit. A circuit with its only non-trivial subtour of the form (2,7,17)
is called a transposition and is denoted by aj;. A transposition of the
form o ;41 = iq1,is called an adjacent transposition and is denoted
by 3;. We denote by £ the identity permutation, (that is, &) = 4 for
all in N). For any two permutations 7 and % on N, we define 7 o U,
product of m with v, as o ¥(¢) = 7w(¢(z)) for all 1 € N.

For any cost matrix C and any two permutations 7 and ¥ on N. we
define the permuted cost matrix C™% as

Ty IR T
Cj = Cria) VI

We denote C&¥ by C¥. Thus, c(m o) = ¢" () = doien C?y’;(i)'

Definition 10 Suppose the digraph G, associated with a permutation 7
has m connected components on node sets Ny, Ny, ..., N,,. Then Gy =
(N;,E;"), the patching pseudograph of m, is defined as Ny ={1,...,m},
and By = {e; = (u,v) 11 € {1,2,...,n—1},i € N, (i +1) Ny}. For
any S C{1,2,...,n— 1} we denote by EJ(S] the set {e; € ET i€ S}

It may be noted that the edges {ei,ez,...,e,—1}, when traversed in
that order, form an Eulerian trail in G7. Figure 11.1 shows the patching
pseudograph for the case : n =38, (1) =4, 7(2) =3, 7(3) =5, 7(4) =
1, n(5) =2, n(6) =8, n(7) =17, n(8) =6.

sy

Figure 11.1. Patching pseudograph G3

An optimal tour v* is an optimal assignment of a successor job to each
Jjob @ which results in a cyclic ordering of the jobs. This can be expressed

496 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

as an optimal matching of the values {b; : 2 € N} to values {a; : 1 € N}
which results in a cyclic job ordering. The Gilmore-Gomory scheme
starts by optimally matching of the b;’s with the a;’s, disregarding the
requirement that the resultant job ordering should be cyclic. If the re-
sultant permutation 7 on the job set N is a tour, then it is obviously
an optimal tour. If we get subtours, then these subtours are patched
together to get a tour as follows: a pair {i,i +1} C {1,...,n — 1} is
chosen such that jobs i and ¢+ 1 lie in different subtours of 7. (It may
be noted the choice of patchings depends on the numbering of the jobs.)
The permutation 7 is then modified to 7 o §;. This results in the two
subtours of 77 containing jobs ¢ and 7 + 1 being combined into one, while
the other subtours of 7 remain unaffected. This operation, which we call
adjacent patching, is then repeated until we get a tour. The patching
pseudograph of 7 plays an important role in identifying an optimal set of
adjacent patchings. A formal description of the algorithm is given below.

Gilmore-Gomory Scheme for the GG-TSP

Step 1: Renumber the jobs such that by < by < --- < b,. Let 7 be a
permutation on the set N such that ar(y < arg) < -+ < agqy)-
If 7 is a tour then output 7 and stop.

Step 2: Suppose the digraph G, has m connected components. Con-
struct the patching pseudograph G7 = (N7 , By). Assign to
each edge e; € EJ a cost w; = dj;, where D is the density matrix
of C™. Find a minimum cost spanning tree EZ[T*]in G7, (that
is, the edge set of the optimal spanning tree is {e; : ¢ € T™}).

Step 3: Construct a digraph Go = (T, Ep) where Ep is defined as
follows: for all {1 — 1,7} C T,

(t—1,4) € Ep ifd;; =0 for all j <1
(i,—1) € Eo otherwise.

Find an ordering (¢1,%2,...,%;) of its node set 7* such that for
any e = (iy,%,) € Eo, u < v. (Since the digraph Go is acyclic,
such an ordering exists.) Then y* =7of; 0ofj,0---08;, isa
tour and is the desired output. Stop.

It is not difficult to verify that the complexity of the above scheme is
O(nlogn).

Let us now illustrate the above algorithm with an example. Let
n =8, (a1,b1) = (250,100), (a2,b2) = (160,140), (as,b3) = (350, 200),
(a4, b4) = (100 300), (a5, bs) = (120450) (as, bg) = (550, 500) (CL77 b7) =

7

Polynomially Solvable Cases of the TSP 497

(500, 600), (as,bs) = (400,700); f(z) = 2 and g(z) = —1 for all z € R.
In this case, the cost matrix is

300 120 500 0 40 900 800 600]
220 40 420 —40 —20 820 720 520
100 —40 300 —100 —80 700 600 400
-50 —140 100 —200 —180 500 400 200
-200 -290 -—100 -—350 —330 200 100 —50
—250 —340 -—-150 —400 380 100 0 -—100
—350 —440 —-250 500 —480 —-50 —100 —200
| —450 —-540 -350 600 580 —150 —200 —300

Step 1: We already have b; < by < --- < bg. Hence, no renumbering
of jobs is necessary. We have 7(1) = 4, n(2) =5, 7(3) = 2, 7(4) =
1, n(5) =3, n(6) =8 n(7) = 7 m(8) = 6. The permutation 7 is not a
tour. The graph G is shown in Figure 11.2.

y 5
2
?) @ Q %7
s
y s
3
Figure 11.2. The digraph G

The matrix C™ and its density matrix D are as given below.

0 40 120 300 500 600 800 900
-40 -20 40 220 420 520 720 820
-100 -80 -40 100 300 400 600 700
lod -200 -180 -140 -50 100 200 400 500
-350 -330 -290 -200 -100 -50 100 200 |’
-400 -380 -340 -250 -150 -100 0 100
-500 -480 -440 -350 -250 -200 -100 -50 J

-600 -580 -540 -450 -350 -300 -200 -150

and _
20 20 0 0 0 0 0
0 20 40 0 0 o0 O
0 0 50 53 0 0 0
D= 0 0O 0 5 53 50 0
0 0 ¢} 0 (0] 50 0
0 0 0 0O 0 0 50
. 0 0 0 0 0 0 0 |

Step 2 : m = 4; N = {2,3,5}; Ny = {1,4}, N3y = {6,8}, Ny = {7}
The patching pseudograph G is precisely the one shown in Figure 11.1.
The weights of the edges of G are {w1 = d1; = 20, wa = dog = 20, w3 =

498 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS.

d33 = 50, wy = dga = 50, ws = ds5 = 0, we = dgs = 0, wr = dy7 = 0}.
Hence, {e1, e5,es} is the edge set of a minimal cost spanning tree, (that
5, T ={1,58})

Step 3 : The corresponding Order digraph G is shown in Figure 11.3.

e Ot
% 5 8

Figure 11.3. Order digraph Go = (T, Eo)

Thisgives us ordering (1, 5, 6) of elements of 7T*. Hence, 7* = 70 3; o
Bs o Bs. Thus, the output is v* = (1,5, 8,6,7,3,2,4, 1).

The key operation used in the above algorithm is post-multiplication
of the starting permutation ™ by a sequence of adjacent transpositions.
We now present some basic results that will help us develop a better
feel for this operation and therefore the algorithm. This will simplify
explanation of the extensions of the scheme that will be discussed in the
next section.

3.2. Some basic results

Recall that a circuit is a permutation with only one non-trivial sub-
tour.

Observation 11 [360] For i € {1,2}, let v; be a circuit on N with
its unique non-trivial subtour €; on node set N;. If N1 N\ Ny =), then

$10P2 =P20p1.

For example, for any {7,7} C {1,2,...,n} such that i — j| > 1,
Bi o B; = Bj o B;. However, B3; 0 Biy1 # Bir1 0 Bs.

Observation 12 [360] Let 7 be a permutation on N with non-trivial

subtours €1,Cy,..., €. on node sets Nj, Ny ..., N, respectively. For
eachj € {1,...,7}, let p; be the circuit on N with <; as its unique
non-trivial subtour. Then m™ = p; 0 @y, 0 --- 0 @, for any ordering
(41,72, ...,%,) of the elements of the set {1,2,. .., r}.

Observation 13 [360] Let © be an arbitrary permutation on N and let
{2,7} C N. (i) Ifi and j both belong to the same subtour ¢ of m then in
T O @5, the subtour € is decomposed into two subtours, one containing
t and the other containing j, while all the other subtours of 7 o ai; are
precisely the same as the other subtours of w. (ii) Ifi and j belong to

Chapter 15

THE BOTTLENECK TSP

Santosh N. Kabadi

Faculty of Administration

University of New Brunswick-Frederiction
New Brunswick, Canada

kabadi@unb.ca

Abraham P. Punnen

Department of Mathematical Sciences
University of New Brunswick-Saint John
New Brunswick, Canada

punnen@unbsj.ca

1. Introduction

In this chapter we study the bortleneck traveling salesman problem
(BTSP) introduced in Chapter 1. BTSP is a variation of the classical
traveling salesman problem (TSP) that differs from the TSP only in the
objective function. Let us first restate the problem.

Let G = (N, E) be a (directed or undirected) graph on node set
N = {1,2,...,n} and let F be the family of all Hamiltonian cycles
(tours) in G. For each edge e € E, a cost ¢, is prescribed. For any
H € F, let cmax(H) = max{c. : e € H}. Then the BTSP is to find a
Hamiltonian cycle H € IF such that cpay(H) is as small as possible.

Without loss of generality we replace G by K, in the undirected case
and f?‘n in the directed case by adding the missing edges with cost oo.
Thus, the edge costs will be given in the form of an n x n matrix C,
called the cost matrix, where any non-diagonal entry c;; corresponds
to the cost c. of the edge e = (¢,7). As indicated in Chapter land

Chapter 11, we can also represent a tour in K, as a cyclic permutation
vyon N = {1,2,...,n}. Let cpax(v) = max{c; ,iy : ¢ € N}. Then the
BTSP is to find a tour v* on N such that cpax(v*) = min{cpax(y) : 7 is

697

G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and Its Variations, 697-735.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

698 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

a tour on N}. When the underlying cost matrix needs to be emphasized,
we sometimes denote the BTSP with cost matrix C as BTSP(C). The
BTSP can also be formulated as an integer programming problem:

Minimize max{ci;zij, 1 <4,j <n, i #j} (1)
Subject to (2)
zi; = l,j¢€ N (3)

i=1

n
Tij = 1,7¢€ N (4)

j=1
Ti; = Oorl (5)

Vv

1VS C N, (6)

DI
€S jes

where S = N\ S.

In fact each of the (mixed) integer programming formulations of TSP
discussed in Chapter 1 leads to a corresponding (mixed) integer pro-
gramming formulation of the BTSP.

To the best of our knowledge, the bottleneck TSP was introduced
by Gilmore and Gomory [360] assuming special structure of elements
of C. Garfinkel and Gilbert [349] considered the general BTSP model
and discussed an application of the problem in the context of machine
scheduling. Meaningful interpretations of the BTSP model and its vari-
ations can be given in the context of some route planning problems and
transportation of goods perishable in time.

Another problem closely related to the BTSP is the maximum scatter
traveling salesman problem (MSTSP) [33]. Here, each edge e in G is
assigned a weight w, and we seek a tour H in G such that the smallest
edge weight in H is as large as possible. Let wmin(H) = min{w, : e €
H}. Then, the MSTSP is to find a Hamiltonian cycle H € F such that
wmin(H) is as large as possible.

Applications of MSTSP and its variations include medical image pro-
cessing [666], obtaining revetting sequence in joining metals in the air-
craft industry [745, 746] etc.

The problems MSTSP and BTSP are equivalent in the sense that an
optimal solution to the MSTSP with weight matrix W can be obtained
by solving the BTSP with cost matrix C = —W and vice versa. If we
require the edge costs/weights to be positive, a large enough constant
could be added to each of the edge costs/weights. However, this trans-

The Bottleneck TSP 699

formation may not be useful for some approximation algorithms that
use special structure of C or W, since the addition of a constant and/or
multiplication of edge costs/weights by —1 may violate key properties
of the matrix that are used by these algorithms. Thus in such cases, the
characteristics of the two problems are different and warrant separate
treatment.

When the cost matrix C is symmetric, (equivalently the underlying
graph is symmetric), we refer to the BTSP as symmetric bottleneck trav-
eling salesman problem (SBTSP); otherwise it is referred to as asym-
metric bottleneck traveling salesman problem (ABTSP). A special case
of SBTSP, where the vertices of G correspond to points in the Euclidean
plane and edge costs are Euclidean distances, is referred to as Euclidean
bottleneck traveling salesman problem(EBTSP). Similarly we have sym-
metric, asymmetric, and Euclidean versions of the MSTSP.

It is well known that the Hamiltonian cycle problem on a grid graph is
NP-complete [466]. As an immediate consequence we have that EBTSP
1s NP-hard and hence BTSP is NP-hard [466]. In fact BTSP is NP-
hard even if we restrict the graph G to a grid graph or a planar bi-
partite graph in which degree of each node is 3 or less. As in the case
of TSP, this follows immediately by a reduction from the Hamiltonian
cycle problem on these graphs which is known to be NP-complete [466]
(see Appendix B). Similarly, MSTSP can be shown to be NP-hard on
grid graphs and planar bipartite graphs in which degree of each node
18 3 or less. Fekete [284] recently proved that MSTSP under Euclidean
distances in R? is NP-hard for any fixed d > 3. More complexity results
are discussed is Section 3.

2, Exact Algorithms

Recall that an exact algorithm for an optimization problem is guaran-
teed to produce an optimal solution for any instance of the problem or
declare that a feasible solution does not exist. Since BTSP and MSTSP
are NP-hard, such algorithms are generally of implicit enumeration type.
Exact algorithms for MSTSP have not been discussed explicitly in liter-

ature. However, the transformation discussed in Section 1 can be used
to solve MSTSP as BTSP.

2.1. BTSP as a TSP

In the preceding chapters, we have seen several interesting properties
of and solution approaches for the TSP. Let us now examine how the TSP
is related to the BTSP. We will first show that BTSP can be formulated

700 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

as a TSP in the sense that an optimal solution to this TSP gives an
optimal solution to the BTSP.

Note that in solving BTSP to optimality, the numerical values of the
edge costs are unimportant; only the ordering of edge costs matters. Let
the edges of G be labeled as {ey,es,. .. ,em} such that ¢,; <c., <+ <
Ce,,- Let {d. : e € E} be another set of costs for the edges of G. Let
us denote by BTSP(C) and BTSP(D) the instances of BTSP with edge
costs ¢.’s and d.’s respectively. Let L and U respectively be known lower
and upper bounds on the optimal objective function value of BTSP(C).

Lemma 1 Ifd., <d., <. < d,, with d., < d.,., whenever c., <
Cesyq Jor all © such that L < c., < U, then every optimal solution to
BTSP(D) is also an optimal solution to BTSP(C).

The proof of the above lemma is straightforward.

Leto; < ap < --- < oy be an ascending arrangement of distinct costs
ce of edges of G such that L < ¢, <U. Define Fr = {H € F : cppax(H) =
max{cc:e € H} =a,} forr=1,...,t, Fy1 = {H € F : cmax(H) > o},
andU, = U_,F;,r =1,...,t+1. Consider new edge weights{d, : e € E}
satisfying,

min{) "d.:H € F} >min{) do:H e Ui} (7)
ecH e€H

for all 2 <r < (t+ 1). Here, minimum over empty set is taken as —oo.
Let TSP(D) denote the TSP with edge weights d. fore € E.

Theorem 2 Every optimal solution to TSP(D) is also an optimal so-
lution to BTSP(C).

Proof. Clearly, if k£ is the smallest index such that F} is non-empty
then any H € F} is an optimal solution to BTSP(C) with the optimal
objective function value ak. If H' is an optimal solution to TSP(D) and
H' € Fp, then,

Y de=min{) d.:HeF}>min{} de:He Uy},
e€H’ eceH e€H

Thus, U,_; must be empty and hence H' is optimal to BTSP(C). m
P

Corollary 3 Let by =0 and forj=2,...,t+1, letb; = nbj_; + 1. Let
the edge costs d.’s be defined as :

0 if ce <
do=1{ b ifce=a; j=2...,1
bir1 ifce >

The Bottleneck TSP 701

Then every optimal solution to TSP(D) is also an optimal solution to
BTSP(C).

Corollary 4 Let p be the largest index such that c., < U and m = |E|.
Define the edge costs do, = 2071 for j = 1,2,...,p and de; = = ZPHL for
=p+1,p+2,...,m. Then every opnmal solutzon TSP(D) is also an
optimal solution to BTSP(C).

Let k; be the number of edges e with ce = oy, 2 =1,...,1.

Corollary 5 Let b = 0. FOI j 2,...,t+ 1, let u; be the smallest
positive integer such that Z k < n. Defme b; = Zj 1 k b; + (n —

ZZ»i ki)bu;—1+1. Let the ea’ge costs de’s be defined as :
0 Z‘fce <a
de: bj ifCe:aj,jZZ,...,t
b1 ifce >y

Then every optimal solution to TSP(D) is also an optimal solution to
BTSP(C).

The proofs of corollaries 3, 4 and 5 follow from the fact that the special
edge costs defined satisfy the condition (7).

Results analogous to Theorem 2 in the context of various bottleneck
problems including the BTSP are well known [146, 410, 472, 691]. Al-
though, Theorem 2 shows that BTSP can be solved as a TSP, it is not
of much practical value since the costs d. used in TSP(D) grow expo-
nentially. However, when the number of distinct edge costs between
given lower and upper bounds on the optimal objective function value
is relatively small (say < 10), then the edge costs defined in corollar-
ies 3 and 5 are sometimes useful. This is exploited in the generalized
threshold algorithm given in the next section.

A result similar to Theorem 2 can be obtained for the case of MSTSP
showing that MSTSP can be solved as a MAX TSP or as a TSP.

2.2, Generalized Threshold Algorithm

The generalized threshold algorithm [691] is a modification of the
well known threshold algorithm for solving bottleneck problems [269].
It solves BTSP as a sequence of TSP’s with relatively smaller edge costs
utilizing Corollary 3. Without loss of generality, we assume the edge
costs are positive. Thus L > 0. Let 53, 52,..., S, be an ordered partition
of the index set {1,2,...,t}, (thatis, pe€ S;, g € S, 1 < j implies ¢, <

702 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

ag). We say that an edge e of G corresponds to S; if ce = a;, for some
p € S;. For each edge e that corresponds to S;, define c; =1, 1 <1<
Define ¢, = 0if ¢, < Land ¢, = r + 1if ¢, > U.Let BTSP(C)
represent the BTSP with edge costs {c/e :e€ E}.Let H' be an optimal
solution to BTSP(C') with optimal objective function value k. (Note
that ke {1,..., r}.) Let H* be an optimal solution to BTSP.

Theorem 6 [691] minies, {0} < cmax(H*) < max;es, {a:}-

Note that BTSP (C’)is an approximation to the problem BTSP(C).
If 7 is small (say < 10), then BTSP(C’) could be solved as a TSP with
edge costs of moderate size using Corollary 3 or 5. Further, the solution
to BTSP (C’) provides new lower and/or upper bounds for the BTSP
as guaranteed by Theorem 6. Using these new bounds, a ‘better’ ap-
proximation to BTSP can be constructed. Continuing this process, we
eventually get an optimal solution to the BTSP. Our generalized thresh-
old algorithm is precisely this. A formal description of the algorithm is
given below.

The Generalized Threshold Algorithm

Step 1: Construct a lower bound L and an upper bound U for the
optimal objective function value. Set ¢ = 1, (¢ is the iteration
counter).

Step 2: Let a1 < as < -+ < ay, be an ascending arrangement of
distinct edge costs ¢, such that L < ¢, < U.

Step 3: Construct the ordered partition Sy, .Ss, ... s Oy OF §1,2,00 15)
Let every edge e with cost ¢, < L correspond to Sy and every
edge e with ce > U correspond to Sy(g)41. Let cle =1 for edges
e that corresponds to S;, 0 <7 < r(g) + 1.

Step 4: Solve the BTSP with costs c;. (This is done by solving an
equivalent TSP indicated in Theorem 2.) Let H’ be the optimal
solution produced and let the optimal objective function value
be k. (Note that k € {1,...,7(g).)

Step 5: If |Sk| = 1, then output H’ and stop. Else update the lower
and upper bounds
L= miniegk{ai} and
U = maxeep{ce}.
Set ¢ = g + 1 and go to Step 2.

The validity of the generalized threshold algorithm follows from the
preceding discussions. Note that the number of partitions, = (indicated
as 7(g) in the algorithm), is a function of the iteration counter and can

The Bottleneck TSP 703

be changed from iteration to iteration. For a large value of r, the TSP
in Step 4 will have very large edge costs, leading to overflow errors. A
reasonable choice of r is a number less than or equal to 10. The com-
plexity of the algorithm depends on the number of iterations, which in
turn depends on the way the partitions S;, So, ..., S, are constructed.
If S1,5,...,S,—1 are selected as singletons and S, contains all the re-
maining edges with cost ¢, between L and U, the algorithm could take
O(n?/r) iterations in worst case, since t = O(n?). We call this the in-
cremental search version of the generalized threshold algorithm. If | S|
is approximately equal to |S;| for all 1 < 4,5 < r, the number of iter-
ations of the generalized threshold algorithm is O(log, n). We call this
the r-section version of the generalized threshold algorithm. If the lower
bound L is expected to be tight, the incremental search version may
work well in practice and often terminates in one iteration, although its
worst case complexity is too high. If r = 2 (which is desirable for very
large n), Step 4 of the generalized threshold algorithm can be imple-
mented as testing hamiltonicity of an appropriate spanning subgraph of
G. This special case of the generalized threshold algorithm is precisely
the adaptation of the well known threshold algorithm to the BTSP.

The generalized threshold algorithm could take advantage of existing
powerful TSP codes to get a reasonably fast algorithm for the BTSP
without much programming effort. It is easy to develop a corresponding
generalized threshold algorithm for the MSTSP which solves the prob-
lem as a sequence of MAX TSP’s. We could also use the generalized
threshold algorithm for BTSP to solve MSTSP using the transforma-
tion discussed in the Section 1.

2.3, Branch and Bound Algorithms

Branch and bound algorithms are classical approaches for solving
‘hard’ combinatorial optimization problems. The power of a branch
and bound algorithm depends on the ability to generate good lower and
upper bounds on the optimal objective function value and establishing
an efficient branching strategy to generate the search tree. Garfinkel and
Gilbert [349], Carpaneto et al [165], and Sergeev and Chernyshenko [757]
developed specialized branch and bound algorithms to solve BTSP. Com-
putational results based on problems of size less than or equal 200 are
reported in [165, 349]. There is no recent experimental study published
on the branch and bound algorithms for BTSP. The branching strategies
used by Carpaneto et al [165] and Garfinkel and Gilbert [349] are similar
to those studied for the case of TSP and will not be discussed here. For
details we refer to the original papers. (See also Chapter 4.)

704 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

2.3.1 Lower Bounds. We now discuss some good lower bounds
for the BTSP that can be obtained efficiently.

2-max Bound: This lower bound is very simple and easy to compute.
It is valid for the symmetric version of BTSP only. For each node ?
of G, let A(¢) be the set of edges incident on 7 and p; be the second
smallest cost (counting multiplicity) of edges in A(i). Then max;en{;}
is a lower bound on the optimal objective function value of the BTSP.
In a graph with m edges, this bound can be identified in O(m) time.
An asymmetric version of 2-max bound is introduced by Carpaneto et

al [165].

Biconnected Spanning Subgraph Bound: We denote this lower
bound as BSS bound and it is defined for the symmetric version of BTSP.
Since every tour is biconnected, the optimum objective function value of
a Bottleneck biconnected spanning subgraph problem (BBSSP) on the
graph G is a lower bound for the BTSP. Several algorithms are avail-
able to solve the BBSSP. For example, in a graph with m edges and n
nodes, Manku [578] proposed an O(m) algorithm, Punnen and Nair [685]
an O(m + nlogn) algorithm, Timofeev [793] an O(n?) algorithm, and
Parker and Rardin [661] an O(n?logn) algorithm to solve BBSSP.

Strongly Connected Spanning Subgraph Bound: We denote this
bound as SCSS bound and is used for the asymmetric version of the
BTSP. Since every directed Hamiltonian cycle is strongly connected,
the optimal objective function value of a bottleneck strongly connected
spanning subgraph problem (BSSSP) on the digraph G is a lower bound
for the ABTSP on G. In a digraph with m arcs, BSSSP can be solved
in O(m) time [677].

Assignment Bound: The assignment problem is used to compute
lower bounds for the traveling salesman problem. In the same way,
the bottleneck assignment problem (BAP) can be used to compute a
lower bound for the BTSP. Carpaneto et al [165] used the assignment
bound, among other lower bounds, in their branch and bound algorithm
for BTSP. They also provided a heuristic search scheme to find alternate
optimal solutions for the BAP that correspond to cyclic permutations
(tours). If the heuristic is successful in getting such a tour, it is indeed an
optimal tour. BAP can be solved in O(n?®) time using an algorithm of
Punnen and Nair [686]. For the case of sparse cost matrix (several edge
costs are very large) an algorithm due to Gabow and Tarjan [343] runs
faster. Other algorithms for BAP include Derigs and Zimmerman [253],

The Bottleneck TSP 705

and Carpaneto and Toth [167].

2.4. Branch and Cut Algorithms

Branch and cut algorithms are the state-of-the-art exact algorithms
for the TSP (see Chapters 4and 2) that could solve reasonably large
TSPs to optimality. A branch and cut algorithm for the TSP is based
on a partial linear programming representation of the TSP. The suc-
cess of the algorithm depends on the ability to generate facets or high
dimensional faces of the TSP polytope that are violated by a ‘current’
infeasible solution. The BTSP can be formulated as a bottleneck linear
programming problem (BLP) [410]

Minimize max{c. : z. > 0}
Subject to X € T},

where T, is the TSP polytope (symmetric or asymmetric depending
on whether BTSP is symmetric or asymmetric) and entries of X =
(z1,29,...,2m) correspond to edges of G. Since the objective function
of the BLP is concave and quasi-convex, it can be shown that there exists
an optimal solution to this BLP that is an extreme point of T}, and a local
minimum is a global minimum. Thus branch and cut algorithms similar
to those for TSP can be developed for the BTSP using cutting planes
and a BLP solver. However, no implementation of such an algorithm is
available in literature.

A dynamic programming approach for the BTSP was proposed by
Sergeev [756]. As in the case of TSP, this algorithm is primarily of
theoretical importance only.

3. Approximation Algorithms

In Chapters 5 and 6 we have studied approximation algorithms for
the TSP where a priori mathematical guarantee could be obtained on
the performance of an approximation algorithm. Chapters 8, 9, and
10 discussed implementation aspects of various practical approximation
algorithms (heuristics) for TSP. The literature on approximation algo-
rithms for BTSP is not as extensive as that of the TSP. In this section
we study approximation algorithms for BTSP and MSTSP. We assume
throughout this section that the edge costs are positive.

Recall that an algorithm yields a factor § approximation for a mini-
mization problem, if the algorithm is guaranteed to produce a solution
whose objective function value is at most § times the optimal objective
function value. An algorithm yields a factor §-approximation for a max-

706 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

imization problem if the algorithm is guaranteed to produce a solution
whose objective function value is at least 1/§ times the optimal objective
function value.

Note that transformation used earlier between BTSP and MSTSP
may not map a d-approximate solution of BTSP to a J-approximate
solution of MSTSP. Thus, for worst case analysis of approximation al-
gorithms we treat these two problems separately.

Theorem 7 [661, 33] Unless P = NP, there is no polynomial time -
approximation algorithm for the BTSP or MSTSP for any constant 0,
1<46 < co.

Proof. Let us first consider the case of symmetric BTSP. We prove
the theorem by showing that any such approximation algorithm A, if
exists, can be used to solve the Hamiltonian cycle problem in polynomial
time, implying P = NP. Suppose that we are given a graph G* and we
wish to test if G* contains a Hamiltonian cycle. Convert the graph G*
to a complete graph K, by adding the missing edges and assign a cost of
0 + 1 to each of these new edges. Assign a cost 1 to each of the original
edges. Now we have an instance of SBTSP on K,. If G* contains a
Hamiltonian cycle, the optimal objective function value, OPT, of our
SBTSP is 1 and if the algorithm A is applied to this instance, it must
produce a tour of value ¢ or less (in fact exactly equal to 1). If G* has
no Hamiltonian cycle, then OPT is § + 1. Thus the objective function
value of the solution produced by A is less than or equal to ¢ precisely
when G* contains a Hamiltonian cycle. The result now follows from the
NP-completeness of Hamiltonicity testing [347]. The proof for the case
of ABTSP or MSTSP (symmetric and asymmetric) can be obtained in
a similar way. ®

In view of Theorem 7, it is not very likely that we shall succeed in ob-
taining meaningful performance bound for polynomial time approxima-
tion algorithms for BTSP or MSTSP with arbitrary edge costs. However,
by assuming special properties of edge costs, heuristics with guaranteed
performance bounds can be obtained.

3.1. Worst Case Analysis of Heuristics for BTSP

Recall that for any 7 > 1/2, the edge costs c. of a complete graph
K, satisfy the 7-triangle inequality [22], if for any three nodes ¢, j, k of
Kn, cij < 7(eik + cxj)- If 7 = 1, 7-triangle inequality reduces to the
triangle inequality. 7 = 1/2 forces all the edges of K, to be of same
cost. If 7 > 1, T-triangle inequality can be viewed as a relaxation of the
triangle inequality, where as for 1/2 < 7 < 1, it is a restriction on the

The Bottleneck TSP 707

triangle inequality. The following lemma is an immediate consequence
of the 7-triangle inequality.

Lemma 8 Suppose the edge costs c. of K, satisfy the t-triangle in-
equality for some T > 1/2. Let P(i,j) = (e1,ea,...,e,) be a path in
K, joining vertices i and j. Then, c;; < min{Si, So}, where S; =

_ r—1 k - r—1 _k
T" ICEr + Zk:l T Ce, and Sy=1" lcel + Zkz:l T Cerf1_k-

The concept called the power of a graph plays a central role in our
approximation algorithms for SBTSP

Definition 9 Let G = (N, E) be a graph (not necessarily complete) and
t be a positive integer. The t** power of G is the graph Gt = (N, EY),
where there is an edge (u,v) € E' whenever there is a path from u to v
in G with at most t edges.

For any graph G = (N, E) with edge costs c. for e € E, cnax(G)
denotes max{c, : e € E}. Similarly, cynipn(G) = min{e, : e € E}. A
similar notation will be used if G is replaced by a collection S of edges
of G. We use the phrase e € G and e € F interchangeably.

G? is called the square of the graph G and G® is the cube of G.

Lemma 10 Suppose the edge costs c. of K,, satisfy the T-triangle in-
equality for some T > 1/2. Let G be a subgraph of K,,. Then

t Cmax(G) ifr=1
emax(GY) < { L2707 — 772 — Demax(G) if 7> 1
,r—:—l('rt_1 + 7 = 2)cmax(G) ifr <1

Proof. Let (i,7) be an arbitrary edge of G'. By definition of G?,
there exists a path P(i,7) = (e1,e9,...,e.)in G' from i to j of length
at most ¢. By Lemma 8§,

chek <t emaxlG) for r=1.

708 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

Similarly, if 7 > 1, then by Lemma 8 we have,

r—1
Cij < TT—ICeT+ZTkCek
k=l
r—1
< (T D7) emax(G)
k=1
<

t—-1
(T)) emax(G)
k=1

T —_
= 7_—:—"1(27_2:—1 = Tt % o I)Cmax(G)
The case 7 < 1 can be proved in a similar way. B

Theorem 11 Suppose the edge costsc. of K, satisfy the T-triangle in-
equality for some T > 1/2. Let S be a spanning subgraph of K, such
that cmax(S) is a lower bound for the optimal objective function value
of BTSP and let H* be an optimal solution to BTSP on K,. If St,
1 <t < n and integert, contains a Hamiltonian cycle H, then

14 Cmax(H*) ifT =1
Cmax(H) < }%f(ZTt_l — i 1)Cmax<H*) ifT >
TTTI(Tt-l +F = 2ol F™) ifr <1

Proof. Assume that 7 = 1. By definition of power of a graph,
cmax(H) < max(S*) < t cmax(S). The last inequality follows from
Lemma 10. From the optimality of H*, cpax(S) < cmax(H*). The
result now follows immediately. The case 1/2 <7 <1 and 7 > 1 can be
proved in a similar way. m

Theorem 11 and Lemma 10 are generalizations of corresponding re-
sults by Hochbaum and Shmoys [449] proved for the case 7 = 1.

Let us now discuss a simple heuristic for BTSP called the bottleneck
double tree heuristic, which is an adaptation of the double tree heuristic
for the TSP.

Bottleneck Double Tree Heuristic

Step 1: Compute a bottleneck spanning tree 7 of K,.
Step 2: Duplicate the edges of 7 to form an Eulerian multigraph 7%

Step 3: Identify an Eulerian tour in 7% Traverse T* along this Eule-
rian tour and introduce shortcuts whenever a previously visited
node is encountered, to produce a tour in K.

The Bottleneck TSP 709

- Note that Step 3 of the algorithm allows a lot of flexibility. It is pos-
sible to construct examples where the double tree heuristic produces the
worst solution. The quality of the solution produced however depends on
the order in which the edges are traversed in the Eulerian tour. The so-
lution generated by different orders of traversal may be different. Among
all such solutions, identifying the best one can be shown to be a NP-
hard problem. It may be noted that the cube of any connected graph is
Hamiltonian connected (and hence Hamiltonian) [448, 449]. It has been
shown by Hobbs [448] that a tour can be generated in Step 3 of the al-
gorithm by introducing shortcuts to only paths of T* of length 3 or less
and such a tour, say H’, belongs to T°. (See also [100].) By Theorem 11,
if the edge costs satisfy 7-triangle inequality, then

3 Cma.x(H*) ifr=1
Cmax(H,) S %(27—2 — T 1)Cmax(H*) lf T > 1

ﬁ(TQJ‘_T—Q)Cmax(H*) if 1/2S 7 1

where H* is an optimal solution to SBTSP. The short-cutting phase as
described above can be done in O(n) time, (see for example Hobbs [448]).
Also, the bottleneck spanning tree in Step 1 can be obtained in O(m)
time, where m is the number of edges in G [153]. Thus we have the
following theorem.

Theorem 12 If the edge costs satisfy the T-triangle inequality, then the
double tree algorithm produces a solution to the SBTSP in O(n?) time
with a performance bound &, where

w

ifr=1
22 -1-1) ifr>1
T (rP+7-2) if1/2<7<1

T—

0=

T

3
[

|

—

Let us now consider a general heuristic algorithm for BTSP based on
the concept of power of a graph.

Algorithm Power(S,t)

Step 1: Construct a connected spanning subgraph S of K, such that
Cmax(S) is a lower bound on the optimal objective function
value of the BTSP.

Step 2: Find the smallest positive integer ¢ such that S* isHamiltonian.
Step 3: Output any Hamiltonian cycle in S

When S is a bottleneck spanning tree, and ¢t = 3, Power(S,t) isiden-
tical to the double tree algorithm if Step 3 of power(S,t) isimplemented

710 THE TRAVELING SALESMAN PROBLEM AND ITS VARIATIONS

using Steps 2 and 3 of the double tree algorithm. The complexity and
performance bound in this case are the same as those of the double tree
algorithm. We now show that by investing the same amount of time a
better performance bound can be achieved. -

Recall that the objective function value of the bottleneck biconnected
spanning subgraph problem (BBSSP) is a lower bound on the optimal
objective function value of BTSP. Thus, we could use a bottleneck bi-
connected spanning subgraph for S in Step 1 of algorithm Power(S,t).
As we have seen earlier, BBSSP on K, can be solved in O(n?) time, (see
Timofeev [793], Parker and Rardin [661], Punnen and Nair [685], and
Manku [578]).

Now, for a biconnected graph, S, what is the smallest value of ¢ such
that S*is Hamiltonian? Fleischner [312] proved that this value of ¢ is 2.
We state this elegant result in the following theorem.

Theorem 13 The square of every biconnected graph is Hamiltonian.

We are now left with the task of generating a tour in the square of
a biconnected graph. Lau [542, 543] suggested an O(nQ) algorithm to
accomplish this. (See also Rardin and Parker [697].) Thus, by Theo-
rem 11, the performance bound ¢ of this algorithm is 27 (using t = 2)
for 7 > 1/2. We thus have the following theorem.

Theorem 14 Ifthe edge costs of K, satisfy T-triangle inequality, then
a 2r-approzimate solution to the BTSP can be obtained in O(nQ) time.

Algorithm Power(S,t) for ¢t = 2, and 3, with 7 = 1 was published
first by Doroshko and Sarvanov [260] in a Russian paper in 1981.
The case t = 2, 7 = 1 was obtained independently by Parker and
Rardin [661]. Hochbaum and Shmoys [449] considered the case for
general ¢ with 7 = 1. We now show that improving the performance
bound of Theorem 14 for any polynomial time algorithm and any 7 >
1/2 amounts to P=NP. This result was proved by Doroshko and Sar-
vanov [260], Parker and Rardin [661], and Hochbaum and Shmoys [449]
for the case 7 = 1.

Theorem 15 Unless P = NP, there is no polynomial time 217 —e approx-
imation algorithm for BTSP on K,,, with edge costs satisfying T-triangle
inequality, for any e >0, 7> 1/2.

Proof. We prove the theorem by showing that for any e > 0, 7 > 1/2,
a polynomial time 27 — € approximation algorithm A for the BTSP on
K, with edge costs satisfying 7-triangle inequality, can be used to test
Hamiltonicity of an arbitrary graph (digraph), establishing P=NP. Let

